Bone marrow transplantation, a.k.a. stem cell transplantation, can offer a cure for certain cancers, blood disorders, immune deficiencies and even metabolic disorders. But it’s a highly toxic procedure, especially when a closely matched marrow donor can’t be found. Using stem cells from umbilical cord blood banked after childbirth could open up many more matching possibilities, making transplantation safer.
Except for one problem. “Ninety percent of cord blood units can’t be used because they’re too small,” says Leonard Zon, MD, who directs the Stem Cell Research Program at Boston Children’s.
But what if the blood stem cells in those units could be supercharged to engraft more efficiently in the bone marrow and grow their numbers faster? That’s been the quest of the Zon lab for the past seven years, in partnership with a see-through zebrafish called Casper.
Because these fish are see-through, Zon and colleagues can image them to visually compare rates of engraftment when different chemicals are added to their water—in a high-throughput, automated test system.
Red fish, green fish
In what Zon fondly terms the “Dr. Seuss experiment,” described in the July 23rd issue of Nature, a team led by Pulin Li, PhD, Jamie Lahvic and Vera Binder, MD designated some of the zebrafish as donors and chemically tagged their marrow to glow either green or red.
They then removed some of the stem cells for transplantation, incubating the green cells with one of 550 test chemicals, but leaving the red cells untreated. They then injected a mix of treated and untreated stem cells into a cohort of recipient zebrafish. The researchers then tracked the cells’ activity and measured the green:red ratio in each fish.
Read the full post on Vector: Supercharged marrow transplant: Zebrafish reveal drugs that aid engraftment
The opinions expressed in this blog post are the author’s only and do not necessarily reflect those of MassDevice.com or its employees.
The post Improving marrow transplants through an unlikely source appeared first on MassDevice.
from MassDevice http://ift.tt/1KABAXp
Cap comentari:
Publica un comentari a l'entrada